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1. I N T R O D U C T I O N  

In the fall of 1951 I joined the Institute for Advanced Study in Princeton. 
In physics, that was a time of quiet following the burst of activity in renor- 
realization theory, and before the strange particle physics, which was to 
come a couple of years later. The younger physics members at the Institute 
decided to have a special seminar on statistical mechanics, to the dismay of 
Oppenheimer, who felt that somehow this would not be the best use of our 
energy, nor in the best interests of the Institute. The seminar consisted of a 
series of lectures by Jan de Boer and H. A. Kramers. Both gave very good 
lectures. Then one day a new speaker came whom I had not heard before. 
His talk was even better; it was exceptionally clear and extremely lively. I 
thought, here is a physicist who not only knows his stuff, but can truly 
communicate with his audience. That was the first time I met Mark Kac. 

This began a friendship that lasted more than three decades. My 
opinion of Mark Kac as a physicist remained the same, with the added 
knowledge that he also had an equally exceptional ability as a pure 
mathematician. To me, Mark was a physicist, but did mathematics in his 
spare  time. 

As is well known, Mark made fundamental contributions to statistical 
mechanics, the Feynman formulation of quantum mechanics, and the 
soliton solutions in field theory. Throughout  the years I learned a great 
deal of both physics and mathematics from him. Discussions with him had 
a cleansing effect on one's mind. The most recent time, before Mark moved 
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to the West Coast, was the lectures he and Ken Case gave me on solitons, 
which inspired my work on the nontopological species. 

The subject I discuss in this paper is difference equations and conser- 
vation laws. This topic is related to my recent work, which, unfortunately, 
could not have the benefit of Mark's advice and criticism. Nevertheless, I 
feel, were he here, he might like the basic ideas and would see how the 
whole thing could be improved. It is to the memory of my dear friend, 
Mark Kac, that I dedicate this paper. 

At present, in almost all branches of physics, fundamental laws are 
always expressed in terms of differential equations. Difference equations are 
usually used only as approximations. In this paper ! wish to explore an 
alternative point of view: that physics should be formulated in terms of dif- 
ference equations and that these difference equations could exhibit all the 
desirable symmetry properties and conservation laws. As we shall see, the 
particular class of difference equations that will be discussed contains more 
information and more symmetry than the corresponding differential 
equations. 

2. T I M E  AS A D Y N A M I C A L  VARIABLE 

In this new theory I shall treat time as a dynamical variable. I~ This 
will lead to a dynamics formulated in terms of difference equations, instead 
of the usual differential equations. I first review briefly the classical theory 
of this new mechanics, called discrete mechanics, and then go over to the 
quantum theory. 

2.1. Classical Mechanics 

Take the simplest example of a nondimensional nonrelativistic particle 
of unit mass moving in a potential V(x). In the usual continuum mechanics 
the action is 

A(x (O)  = I~ [�89 V(x)] at (2.1) 

where x( t )  can be any smooth function of the time t. Keeping fixed the 
initial and final positions, say xo and x j-, at t = 0 and T, we determine the 
orbit of the particle by the stationary condition 

6A/a(x( t ) )  = 0 (2.2) 

which leads to Newton's equation 

Yc = - d V / d x  (2.3) 
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In the above, x is the dynamical variable and t is merely a parameter. Next, 
we shall see how this customary approach may be modified in the discrete 
version. 

Let the initial and final positions of the particle be the same, 

Xo at t = 0 ,  x i at t = T  (2.4) 

In the discrete mechanics we restrict the usual smooth path x(t) to a 
"discrete path" XD(t), which is continuous but piecewise linear, charac- 
terized by N vertices (as shown in Fig. 1). In Fig. la we have the usual 
smooth path x(t) of a nonrelativistic particle in classical mechanics. 
Moving along x(t) from t = 0 to T >  0, the time t increases monotonically; 
this property is retained under the constraint restricting x(t) to xD(t). Thus, 
as in Fig. lb, we may label the N vertices of xD(t) consecutively as n = 1, 
2 ..... N, each of which carries a space-time position x ,  and t, with 

O < t l  < t 2 < t 3 <  . . .  < i N <  T (2.5) 

The nearest neighboring vertices are linked by straight lines, forming the 
discrete path XD(t), which also appears as a one-dimensional lattice with n 
as lattice sites. In Fig. lb, a variation of the space-time positions of these 
vertices changes the discrete path xD(t). However, a mere exchange of any 
two vertices clearly defines the same XD(t). This is because only the discrete 
path with unlabeled vertices has a physical meaning. There is no 
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"individual" identity of any of the vertices. Thus, the time-ordered sequence 
(2.5) is not an additional restriction, but one that arises naturally when we 
pass from the usual x(t) to the discrete XD(t). 

In the following, we shall keep the site density 

N/T-  1/l (2.6) 

fixed, and regard l as a fundamental constant of the theory. The action 
integral (2.1) evaluated on such a discrete path xo(t) is 

AD=A(xn(t))=~I~ (x"-xn-L)2 t ~ 1 - ( t . - t .  1) V(n) 1 

where 

(2.7) 

V(n)= 1 [x, V(x) dx (2.8) 
X n  - -  X n  - -  1 " X n - I  

is the average of V(x) along the straight line between x,  1 and xn. 
Because the path XD(t) is completely specified by its vertices n(x,, tn), 

a variation in xD(t) is equivalent to a variation in all the positions of its 
vertices 

d[xo(t)] = I] [dx,][dt,] (2.9) 
n 

Correspondingly, the dynamical equation (2.2) becomes the difference 
equations 

OAo/Ox,, = 0 (2.10) 

OAD/Ot . = 0 (2.11) 

We see that in this new mechanics the roles of x ,  and t, are quite similar. 
Both appear as dynamical variables. For each x, or t, we have one dif- 
ference equation, (2.10) or (2.11). The former gives Newton's law on the 
lattice and the latter gives the conservation of energy 

1 ( X n - - X n - l )  2 
E , - ~ k ~ _ ~ - ~ /  +V(n)=E,+ 1 (2.11') 

In the usual continuum mechanics, conservation of energy is a consequence 
of Newton's equation. Here, these two equations (2.10) and (2.11) are 
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independent. Altogether there are 2N such equations, matching in number 
the 2N unknowns x ,  and t, in the problem. Because the action AD is 
stationary under a variation in x~ and in t,, for every n, the discrete theory 
retains the translational invariance of both space and time, and that leaves 
the conservation laws of energy and momentum intactfl 

For  a free particle V(x )  = 0, (2.11) and (2.10) become degenerate; both 
give 

X n  - -  X n  -- 1 
v .  - - const 

tn - -  t n -  1 

The corresponding trajectory is a straight line, the same as the continuum 
case. 

When V ( X )  = g x  with g a constant, the solution of (2.10) and (2.11) 
can be readily found. We find in this case the spacing between successive tn 
to be independent of n: 

tn -- tn l = ~ = c o n s t  

Correspondingly, t, = t o + ne and 

x , = x  o + n v l ~ - � 8 9  1) ge 2 

where v I is the initial velocity ( x l -  X o ) / ( t l -  to). 

When l ~ 0, the site density approaches ~ and the discrete path xD( t )  

can assume the form of any smooth path x(t); consequently, the discrete 
mechanics approaches the usual continuum mechanics. Introduce 

z - n l  

which varies from 0 to T as n runs from 0 to N. Regard 

x~  = x ( ~ ) ,  t~ = t ( ~ )  

From (2.10) and (2.11), it can be shown that in the limit l-~ 0, but keeping 
T fixed (hence, N --* oo ), 

d2x d V  

dt 2 - dx  (2.12) 

and 

(MI~ 
3 ( M V ~  2 

d--~z] \ -~xJ  = const (2.13) 

2 Here, conservation of momentum means that the change of particle momentum is equal to 
the "impulse" generated by the potential. 
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The former is Newton's equation, and the latter gives the asymptotic dis- 
tribution of tn versus n. The constant in (2.13) is determined by the boun- 
dary condition (2.4), so that when ~ varies from 0 to T, t also changes from 
0 to T. In the usual continuum mechanics, only (2.12) is retained. 
Therefore, even in this limit, the discrete mechanics contains more infor- 
mation than the usual continuum mechanics. From (2.13), we see that, 
except for V(x)  = gx, the spacing tn - tn_ 1 is not a constant. 

It is of interest to examine the distribution t(v) near the point V'(x)  = 
dV/dx  = 0, which occurs at, say, x = ~. Let the particle trajectory in the con- 
tinuum limit be x = x ( t ) .  When x = 2 ,  we have V ' (~ )=0  and, for the 
solution under consideration, t = {, so that ff = x([).  In the neighborhood x 
near 2, we may write, with V"(x)  = d2V/dx 2 and ,r -- dx/dt, 

W(x) =. ( x -  ~) v"(~) 

= ( t -  i)  ~(f)  v"(~) 

Substituting this expression into (2.13), we find 

(t - t-) oc (z - f)3/s 

Hence, as ~ ~ f (correspondingly, n--* ffl), although dt/d~-* o% one sees 
that t ~ t- and remains finite. Information such as this is lost if one concen- 
trates only on Newton's equation (2.12). 

In the following, we are interested in l ~ 0, in which case the discrete 
mechanics is fundamentally different from the continuum theory. 

2.2. Nonre la t iv is t ic  Q u a n t u m  M e c h a n i c s  

When we go over from classical to quantum mechanics, in the usual 
continuum theory the particle can take on any smooth path x(t); each path 
carries an amplitude e iA, where A = A ( x ( t ) )  is the same action integral 
(2.1). In Feynman's path integration formalism, the matrix element of 
e - i ~ r  in the usual continuum quantum mechanics is given by 

(x f l  e - i n r  Ixo) = f eia(x(o)d[x(t)] 

in which all paths x( t )  have the same endpoints (2.4) and 

H = _1  (~2/~3x2 + V(x)  

Sometimes it is more convenient to consider the analytic continuation of T 
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to - i T .  The operator e-iUr becomes then e - n r ,  and its matrix element is 
given by 

<xyl e - " r  ]Xo> = f e-  d(xU))d[x(t)] (2.14) 

where 

= l- 13r N(x(t)) ~ + V(x)] dt (2.15) 

In the corresponding discrete theory, we again restrict the particle to 
move only along the discrete path xD(t). By using (2.7) and (2.9), we see 
that (2.12) becomes 

I e'A~ I-I [dx.][dt.] (2.16) 
n 

Likewise, (2.14) and (2.15) become 

where 

N 

<xfl GN(T)Ixo> -=f e-~'~ 1-I l-a'x.]Edt.] (2.17) 
n = l  

do = d(xo(t))  (2.18) 

When the vertices n = 1, 2,... are arranged in a time-ordered sequence (2.5), 
by using (2.15) and (2.18) we see that the discrete action dD is given by 

N+lf(xo: xo 12 ] 
sOD= Z LZ(t _ t ,  1) ~- ( t , - t , _ , )V (n )  (2.19) 

/ ' /=1 

with XN+l = x f  and iN+ 1 = T, as shown in Fig. 2b. 
In the integration over 1-I, [dt,], whenever t; appears larger than, say, 

ti+ 1, we should relink the vertices so that the newly linked ones are in a 
time-ordered sequence. Alternatively, we may relabel them so that (2.5) 
remains valid; such a relabeling of vertices clearly does not change the dis- 
crete path xo(t). [As explained before, this follows from the usual non- 
relativistic continuum mechanics in which the path x(t) is a single-valued 
function of t.] 

In the quantum version of the discrete mechanics it is more convenient 
to regard the constraint (2.6) as a condition on the average site density. 
This can be most easily arranged by considering an ensemble sum over N: 

1(1~ u 
~(T~l)~ ~ ~.~kT] GN(T ) ( 2 . 2 0 )  

N = 0  
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where GN(T ) refers to the matrix defined by (2.17). One may readily verify 
that this Green's function satisfies 

~ r  
fq(T, l) = Jo ~q(z' l) f q ( T -  z, l) dr (2.21) e(l//) 

from which it follows that for large T and neglecting e-r/t, the operator 
~q(T, l) becomes 

(#(T, l) ~ e - ~ r  (2.22) 

where ~ is Hermitian. When l-*0,  H reduces to the continuum 
Hamiltonian H, given by (2.13). The analytic continuation of if(T, l) from 
T to iT leads at large T to the unitary operator e -i~T, which is the S- 
matrix of the theory. Therefore, the unitarity of the S-matrix is maintained 
in the new mechanics, (2) at least when Jt ~ is O(1). 

3. R E L A T I V I S T I C  Q U A N T U M  FIELD T H E O R Y  

As an example, let ~b(x) be a scalar field in the usual continuum 
theory, with x denoting the space-time coordinates. In the path integration 
formulation the operator e ~/r is given by, similar to (2.14), 

e - n r =  f e-~[dqJ(x)] (3.1) 

where H is the Hamiltonian operator, d the usual continuum action in the 
Euclidean space, and T the total "time" interval. [Here, as in (2.14)-(2.15), 
"time" refers to the Euclidean time.] Because in the usual continuum 
theory the space-time coordinates x are parameters, and only ~b(x) are 
dynamical variables, the functional integration in (3.1) is over [d0(x)], not 
[dx]. 

In the discrete version, we impose a constraint on the (average) num- 
ber N of experiments that can be performed within any given space-time 
volume r with N/r  constant. Each measurement 
determines the field ~b(i) as well as the space-time position x(i) with i = 1, 
2,..., N. The i will be referred to as lattice sites, as illustrated by Fig. 2a. 

As we shall see, the Green's function (3.1) will be replaced by 

f e d~ (3.2) 

Because ~b(i) and x(i) are all dynamical variables, in the discrete theory we 
integrate over [&b(i)] as well as [dx(i)]. The latter integration makes it 
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Fig. 2. (a) N measurements in a volume ,(2 in d-dimension, each measurement represented by 
a point of coordinates x~, x2,..., xd. (b) N points connected into a d-dimensional simplicial lat- 
tice. (c)Because each point also carries the field strength r that is being measured, the d- 
dimensional simplicial lattice is embedded in a d +  1 dimensional space with coordinates r 
XD..., X d.  
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obvious that rotational and translational symmetries can be maintained in 
the discrete theory. 

To simulate the local character of the usual continuum theory, each 
site in the discrete theory is coupled only to its neighboring sites, as 
illustrated in Fig. 2b. The whole volume is then divided into triangles if the 
dimension of x(i) is d = 2, tetrahedra if d = 3, 4-simplices when d = 4, etc. 
An example of such a simplicial lattice when d = 2 appears in Fig. 2b. 

We give the algorithm t3) of linking an arbitrary distribution of sites 
into a simplicial lattice for any dimension d: select any group of d + 1 sites. 
Consider the hypersphere (in the d-dimensional Euclidean space) whose 
surface passes through these d +  1 sites. If the interior of the sphere is 
empty of sites, link these sites to form a d-simplex; otherwise, do nothing. 
Proceed to another group of d +  1 sites, and repeat the same steps. The 
d-simplices thus formed never intersect each other, and the sum total of 
their volumes fills the entire space. 

Each site i carries, in addition to its space-time coordinates x(i), also a 
~b(i). Viewed in the x-~b space, the lattice forms a d-dimensional surface 
represented by ~D(X), called the "discrete" function; it is continuous but 
piecewise flat within each d-simplex, as illustrated in Fig. 2c. 

The discrete action d o  in (3.2) can be readily evaluated by using the 
usual continuum action ~r but restricting ~b(x) to the discrete 
function 

d o  =-=- d(~bo(x)) (3.3) 
For example, if 

sg(~b(x)) = I l-�89 + V(~b)] dx (3.4) 

where dx is the d-dimensional volume element in the x space, then, setting 
~b(x) to be the discrete function (bo(x), we find 

5:r189 ~ 2o-([(9(i)--q~(j)]z) + ~ ogiV((9(i)) (3.5) 
l 0 i 

where the first sum is over all links li /and the second over all sites i, 09,. is 
the volume of the Voronoi cell that is dual to the site i, and (4) 

1 1 
2,j = - --~ ~ ~ "c( i ) " z(j) (3.6) 

in which the sum extends over all d-simplices V(O') that share the link l o. In 
V(/j), each vertex, say k, faces a ( d -  1 )-dimensional simplex z(k). In (3.6), 
V(tj) also denotes the volume of the d-simplex and x(i) is the outward nor- 
mal vector of z(i) times its (d-1)-dimensional  volume, as illustrated in 
Fig. 3. 
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T(i) 

J ~ V ( i j )  

Fig. 3. V(/j) represents a d-simplex that shares the link l 0. Let r(i) be its d-1-dimensional 
simplex (on its surface) that faces the vertex i, and ~(i) be the outward normal vector of ~(i) 
times the d -  1 dimensional volume of ~(i). 

As in the previous section, mathematically the discrete theory can be 
regarded as a special case of the usual continuum theory, one in which ~b(x) 
is restricted to those continuous but piecewise flat functions Oo(x) with a 
fixed average density of vertices (i.e., lattice sites). Because the site density 
is an invariant, rotational and translational invariances can both be preser- 
ved in the discrete theory. 

Since the discrete surface, described by Oo(x), is characterized by the 
positions ~b(i) and x(i) of its vertices, a variation over the functional space 
~b(x) in the usual continuum theory becomes 

[dqkD(x)] = l-I [dO(i)][dx(i)] (3.7) 
i 

Correspondingly, (3.1) becomes (3.2). As x(i) changes, the linking 
algorithm keeps track of how these vertices should be linked, so that the 
discrete action d o is extensive; i.e., do  is proportional to the overall space- 
time volume s when g2 is large. Thereby, the unitarity of the S-matrix can 
be established, as before. 

In the usual continuum theory, the equation of motion is given by the 
partial differential equation 

8d(qS(x))/Sq~(x) = 0 (3.8) 

Here in the discrete version it is replaced by the difference equations 

8~;~o/8~)(i) = O, O~C~o/OX(i ) = 0 (3.9) 

The former is the field equation on the lattice and the latter expresses the 
conservation law of the energy-momentum tensor. 

In the integrand of (3.2), the locations of x can be arbitrary. Hence, 
the discrete action do  is identical to that of a random lattice/s) 
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4. G A U G E  T H E O R Y  

I review briefly the random lattice results on Abelian (QED) and non- 
Abelian (QCD) gauge theories. 

The lattice gauge theory was introduced by K. Wilson. In the strong 
coupling limit (square of coupling constant g 2 ~  co), any lattice gauge 
theory gives confinement. This holds for both QED and QCD, and for 
arbitrary space dimension d. The realistic case corresponds, however, to the 
weak coupling. Thus, a key question is whether the transition from strong 
to weak coupling is smooth or not. If smooth, then the confinement 
property of the strong coupling can be carried over to weak coupling; 
otherwise, it cannot. When fl = 1/g 2 changes from 0 (strong coupling) to oo 
(weak coupling), we would like the transition to be smooth for the non- 
Abelian case, but not smooth for the Abelian case, so that the confinement 
holds for QCD, but no for QED. In a hypercubic lattice, there appears to 
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(b) 
The energy u(fl) per plaquette (a) and the specific heat (b) vs. fl=-1/g 2 for the U(1) 

theory on a random 4 x 4 x 4 x 4 lattice. 
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be a phase transition in fl for the U(1) gauge, consistent with the fact that 
QED is not confined. However, numerical results in SU(2) and SU(3) 
indicate that the transition from fl = 0 to fl = ~ is also far from smooth. 
While there is probably no bona fide phase transition in the non-Abelian 
case, the change from cubic (when g2 = ~ )  to spherical (when g2= 0) sym- 
metry is sufficiently hazardous that it is difficult to infer, from the strong 
coupling result, that confinement would remain valid in the weak coupling 
case. 

On the other hand, for the random lattice, its strong coupling limit 
behaves like a relativistic string theory, with full rotational symmetry: the 
string thickness t is related to the string tension T by 

t 2 = (1/2~T) In a (4.1) 

Fig. 5. 

u ( # ) :  

.8 

.6 

A 

.2 

0 

RANDOM L A T T I C E  

D = 4 S U ( 2 )  

5 4 S ITES 

X HOT ~ COLD 
o COLD " HOT 

15 S W E E P S / / 3  

i i ~ t i i I 

0 .4 .8 1.2 

(a) 

I I (  

1.6 
# 

54 SITES SU(2) ~2 du 

c:. ~ t  
WEAK COUPLING 

. . . .  "T_-- . . . . .  .4 ; 
x 

• 2 1 5  

. 2  v •  x • 

L ~ SWEEP/# • • x • AVERAGE = 7000 

0 ~ I i i i i i . I �9 

0 .4 .8 I. 2 1.6 

( b )  

The energy u(fl) per plaquette (a) and the specific heat (b) vs. fl =- 1/g 2 for the SU(2) 
theory on a random 3 x 3 • 3 • 3 lattice. 
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where a is the area enclosed by the string. Furthermore, the mass of the 
glueball mj for a large angular momentum J varies as 

ms oc x// J (4.2) 

exhibiting the typical Regge behavior of a rotating relativistic string. Both 
(4.1) and (4.2) are valid in the strong coupling limit. 

Numerical programs for a random lattice gauge theory were set up by 
Friedberg and Ren at Columbia; the computations were carried out by 
Ren. (6) Figures 4a and 4b give the average plaquette energy u and specific 
heat C versus/3 = 1/g 2 for the U(1) theory. 

The corresponding plots for an SU(2) theory are given in Figs. 5a and 
5b. We see that the specific heat has a peak in the U(1) theory, but not in 
the SU(2) theory. For U(1), the peak becomes steeper when the number of 
lattice sites increases, suggesting that there is a phase transition. On the 
other hand, the specific heat curve for SU(2) has no peak, indicating that 
the passage from strong to weak coupling is a smooth one. Consequently, 
while both theories are confined in the strong coupling limit, the weak 
coupling limit is consistent with deconfinement in the U(1) theory (QED), 
but with confinement in a non-Abelian gauge theory (QCD). 

In contrast, Fig. 6 gives the numerical calculation by Christ and 
Terrano (7) for the SU(3) gauge theory on a regular lattice. As we can see, 

I0 
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AVERAGE SWEEPS//3 401000 

STRONG COUPLING 

i i 

1 2 3 4 5 

REGULAR LATTICE 

i 
o 

WEAK COUPLING ~-~ 

, ~ , r 

6 7 8 9 

Fig. 6. The specific heat  versus  fl for the SU(3) theory on a regular  4 x 4 x 4 x 4 lattice. 
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there is a sharp peak in the specific heat, suggesting that the transition 
from strong to weak in a regular lattice is by no means smooth, unlike that 
in a random lattice. 

5. L A T T I C E  G R A V I T Y  

The usual Einstein action in general relativity is 

A(S)= ~s Igll/2 ~ dx (5.1) 

where S is a d-dimensional, smooth, continuous surface, I gl is the absolute 
value of the determinant of the matrix of the metric tensor g,v on S, ~ is 
the scalar curvature, and dx is the d-dimensional volume element in the 
space-time coordinate x. 

For  lattice gravity, we consider first a (random) lattice s in a flat d- 
dimensional Euclidean space Ra. Label each site by i =  1, 2,.... For every 
linked pair of sites i and j there is a link length [~i- 

Consider now an arbitrary variation 

/0 - '  l,j (5.2) 

Correspondingly, each d-simplex, say ? in s becomes a new d-simplex r 
with the same vertices, but different link lengths. These new link lengths l~j 
are assumed to satisfy all simplicial inequalities, so that each d-simplex ~, 
by itself, can still be realized in a flat d-dimensional space Rd. In general 
the entire new lattice cannot fit into R d. This then defines 3 a d-dimensional 
nonflat lattice surface L. 

Sometimes, it is convenient to embed L in a flat space R N. This is 
possible if 

N = d + n  

is sufficiently large; in that case 

1~= [ r ( i ) -  r ( j ) ]  2 in ~R u (5.3) 

with r(i) the Cartesian N-dimensional position vector of the ith site in R N. 

Since, as we shall see, we shall deal only with the intrinsic geometric 
properties of the lattice surface, this embedding is merely a convenience. 

3 For physical application to general relativity, in order to maintain the quasilocal character 
of the discrete action, we must link only neighboring sites. Thus, when the new link lengths 
l o are too large, the sites have to be relinked. Details will be given elsewhere. 
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Next we wish to evaluate the Einstein action (5.1) when S is restricted 
to the lattice surface L. At first sight, it might appear difficult because the 
metric gij would change discontinuously from simplex to simplex, the 
Christoffel symbol would then acquire a-functions, and the scalar curvature 
6'-functions. Since the Einstein action is nonlinear in gii, one might expect 
the resulting expression to be totally unmanageable. It turns out that this is 
not so. 

It can be shown that the Einstein formula (5.1) evaluated on any d- 
dimensional lattice space L gives the discrete action {8'9) 

A(L)=- fL [gl 1/2 ~ dx (5.4) 

=2Zs , (5.5) 
s 

where dx is the d-dimensional volume element, s is the volume of the 
( D -  2)-simplex, e, is Regge's deficit angle around s, and the sum extends 
over all s in the lattice (see Ref. 10 for the definition of e,). The right-hand 
side of (5.5) is precisely the formula of Regge calculus. (l~ 

In Regge's original approach, he considered the discrete action as an 
approximation to Einstein's continuum action. Here we are reversing the 
role and regarding the discrete action A(s as more fundamental. It is 
therefore satisfying to realize that Regge's action is identical to Einstein's 
action, but evaluated on L 

The quintessence of Einstein's theory of general relativity lies in its 
invariance under a general coordinate transformation 

---9" t x x (5.6) 

that leaves ds 2 unchanged. Since the action for the lattice space L is the dis- 
crete action 

AD=- A(L)= fL ]gll/Z N dx= 2 ~'se~ (5.7) 
s 

the discrete theory clearly remains invariant under the coordinate transfor- 
mation (5.6). Thus, the entire apparatus of coordinate invariance in the 
usual continuum theory automatically applies to the lattice theory as well. 
In addition, as we shall see, the lattice theory enjoys still another, totally 
new class of symmetries, which does not exist in the usual continuum 
theory. Aesthetically, this adds greatly to the appeal of lattice gravity. For 
physical applications, when the link length l is small, our general formula 
(5.7) ensures that all known tests of general relativity are automatically 
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satisfied. Furthermore, by keeping l nonzero, we see that the lattice action 
Ao per volume possesses only a finite degree of freedom. The normal dif- 
ficulty of ultraviolet divergence that one encounters in quantum gravity dis- 
appears in the lattice theory. All these suggest that the lattice theory with a 
nonzero l may be more fundamental. The usual continuum theory is quite 
possibly only an approximation. 

To amplify the aforementioned symmetry properties, let us consider 
any lattice L. From (5.7), we see that the discrete action AD, through its 
right-hand side, is a function of the link lengths It/ 

AD = AD(lij) (5.8) 

We may also characterize the lattice by other means of 
parametrization. We assume all the lattice sites i to lie on a d-dimensional 
smooth enveloping surface S, with z,,(i) as the coordinates of the site i on 
S, where /.t = 1, 2 ..... d. Embed both S and L in a flat space R~v, which is 
always possible provided that N is sufficiently large. Because of (5.3), lij can 
also be determined by giving S and z,(i). Hence, we can also express A D as 
a function of the enveloping surface S and the site positions on S: 

AD = AD(S, zu(i)) (5.9) 

Thus, we can have new symmetry transformations: 

(i) Fix z,,(i), but vary S--+ S'. 

(ii) Fix S, but vary z~(i)--+ z',(i). 

These symmetries are exact if the lo are unchanged; they can be 
approximate even if the l,j do change, provided that, e.g., the link lengths 
are sufficiently small and J g[ 1/2~ dx remains the same on the enveloping 
surface, in which case AD ,.~ A(S) of (5.1). 

In the usual continuum theory, the physical space-time points and the 
underlying four-dimensional manifold are the same. Here, they are distinct; 
the former is related to measurements, while the latter is purely a 
mathematical artifice (like the choice of gauge in the usual continuum 
theory of a spin-1 or -2 field). 

6. C O N C L U D I N G  R E M A R K S  

For more than three centuries we have been influenced by the precept 
that fundamental laws of physics should be expressed in terms of differen- 
tial equations. Difference equations are always regarded as approximations. 
Here, I try to explore the opposite: Difference equations are more fun- 
damental, and differential equations are regarded as approximations. 
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As I have shown, such a difference equat ion formulat ion leads to the 
discrete mechanics, which can also be viewed as the mathematical  limit of 
the usual con t inuum mechanics, but  with a fixed density of lattice sites. 
Because this is an invariant  constraint,  the discrete theory shares the sym- 
metries of the usual cont inuum theory. In  this way, I have succeeded in the 
creation of  theories with finite degrees of  freedom, but which retain all the 
good  properties of the usual cont inuum theory. I suggest that  this discrete 
formulat ion might  be more  fundamental .  
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